Thio-glucose bound gold nanoparticles enhance radio-cytotoxic targeting of ovarian cancer

Feng Geng\(^1\), Kun Song\(^1,8\), James Z Xing\(^2,3\), Cunzhong Yuan\(^1\), Shi Yan\(^1\), Qifeng Yang\(^4\), Jie Chen\(^5,6,7\) and Beihua Kong\(^1,9\)

\(^1\) Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
\(^2\) Department of Radiation Oncology, Cross Cancer Institute, Edmonton, AB, Canada
\(^3\) Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
\(^4\) Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, People’s Republic of China
\(^5\) Department of Biomedical Engineering, University of Alberta, Edmonton, AB, Canada
\(^6\) Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB, Canada
\(^7\) National Institute for Nanotechnology, Edmonton, AB, Canada

E-mail: kongbeihua@yahoo.com.cn

Received 12 February 2011, in final form 19 April 2011
Published 8 June 2011
Online at stacks.iop.org/Nano/22/285101

Abstract

The treatment of ovarian cancer has traditionally been intractable, and required novel approaches to improve therapeutic efficiency. This paper reports that thio-glucose bound gold nanoparticles (Glu-GNPs) can be used as a sensitizer to enhance ovarian cancer radiotherapy. The human ovarian cancer cells, SK-OV-3, were treated by gold nanoparticles (GNPs) alone, irradiation alone, or GNPs in addition to irradiation. Cell uptake was assayed using inductively coupled plasma atomic emission spectroscopy (ICP-AES), while cytotoxicity induced by radiotherapy was measured using both 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-di-phenytetrazoliumromide and clonogenic assays. The presence of reactive oxygen species (ROS) was determined using CM-H2-DCFDA confocal microscopy and cell apoptosis was determined by an Annexin V-FITC/propidium iodide (PI) kit with flow cytometry. The cells treated by Glu-GNPs resulted in an approximate 31% increase in nanoparticle uptake compared to naked GNPs (\(p < 0.005\)). Compared to the irradiation alone treatment, the intracellular uptake of Glu-GNPs resulted in increased inhibition of cell proliferation by 30.48% for 90 kVp and 26.88% for 6 MV irradiation. The interaction of x-ray radiation with GNPs induced elevated levels of ROS production, which is one of the mechanisms by which GNPs can enhance radiotherapy on ovarian cancer.

Online supplementary data available from stacks.iop.org/Nano/22/285101/mmedia

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Ovarian cancer is particularly insidious in nature and is the leading cause of death among gynecological malignancies [1]. In 2009, 21 550 new cases were diagnosed and 14 600 women died of ovarian cancer in the United States alone. Only 20% of patients are diagnosed early enough for treatment to be effective [2]. Traditional methods of chemotherapy, surgery, and radiotherapy can control cancer symptoms; however, these procedures lack targeting specificity [3]. In particular, radiotherapy covers all cancer cells within its...
Three sub-steps were involved in GNP synthesis. (i) 3.2 ml 2.2. Synthesis of GNPs
sodium borohydride (NaBH₄, 452882), sodium citrate
photoelectron spectroscopy (XPS) (ESCALAB 250, Thermo
(DLS) (LB-550, HORIBA Jobin Yvon, USA). X-ray
microscopy (TEM) (JEM-100CX, Japan). The size distribution
of nanoparticles was characterized using transmission electron
(ESRIS INTREPID II XSP). The morphology of gold
measurements divided by the number of cells.
while sodium citrate was electrostatically bound to the GNPs
and the second containing 4 ml of 38.8 mM sodium citrate
respectively. Both the naked GNPs and the Glu-GNPs were
incubated with the cells. In brief, we removed
the culture medium containing FBS and washed the cells with PBS buffer twice. The cells were then cultured with FBS-
medium and treated with GNPs. After the treatment,
the medium containing FBS was used to replace FBS-free
medium. After incubation at different intervals (1, 2, 4, 8,
12, 24, 48, and 96 h), the cells were collected and then re-
suspended into PBS for a final volume of 5 ml. The number of
cells was counted using a hemocytometer. 5 ml of 20% HNO₃
was added into each sample to lyse the cells. The gold mass
in the lysis solution was measured by ICP-AES. The number
of GNPs was calculated via the gold mass, and the number
of GNPs in the lysis solution divided by the number of cells
provided a quantitative measurement of GNP cell uptake.

2.4. Cell uptake of GNPs and Glu-GNPs
SK-OV-3 cell were cultured in 6 cm dishes. When the cells
reached 70% confluence, GNPs and Glu-GNPs were added
into the medium respectively for a final concentration of 5 nM. Because FBS might have an impact on binding and
internalization of GNPs, we used FBS-free medium when
GNPs were incubated with the cells. In brief, we removed
the culture medium containing FBS and washed the cells with PBS buffer twice. The cells were then cultured with FBS-
medium and treated with GNPs. After the treatment,
the medium containing FBS was used to replace FBS-free
medium. After incubation at different intervals (1, 2, 4, 8,
12, 24, 48, and 96 h), the cells were collected and then re-
suspended into PBS for a final volume of 5 ml. The number of
cells was counted using a hemocytometer. 5 ml of 20% HNO₃
was added into each sample to lyse the cells. The gold mass
in the lysis solution was measured by ICP-AES. The number
of GNPs was calculated via the gold mass, and the number
of GNPs in the lysis solution divided by the number of cells
provided a quantitative measurement of GNP cell uptake.

2.5. Irradiation and cell survival assay
SK-OV-3 ovarian cancer cells were seeded at approximately
2 × 10⁴ per well of a 96-well tissue culture plate and incubated
overnight. The medium was replaced by fresh medium
containing different concentrations of Glu-GNPs (0, 1, and
5 nM). 24 h later, the medium containing GNPs was removed,
the cells were washed twice with PBS, and new medium with
FBS was added. The cells were then divided into two groups,
one without irradiation, and the other was followed by either
(i) irradiation with low-energy 90 kVp x-rays (Faxitron x-
rays); or (ii) irradiation with high-energy 6 MV photons, by
a medical linear accelerator (Varian 23EX linear accelerator,
USA), each with a total dose of 10 Gy. After irradiation, cells
were incubated at different intervals (24, 48, 72, and 96 h,
respectively). The cells without nanoparticles or irradiation
served as controls. For all experiments, cell viability was
measured using the 3-(4,5)-dimethylthiazolium (MTT) (Amresco, 0793-1G) assay.
The results for cellular survival in response to Glu-GNPs
with and without radiation were determined using the Opsys
MR™ 96-well microplate reader (CB372, DYNEX, USA) and
expressed as the absorbance at 490 nm at the indicated points
in time.
2.6. Analysis of cell colony formation

For the clonogenic survival assay, both sets of cells, with or without treatment, were incubated for two weeks. Cells were then fixed with 3:1 ethanol to acetic acid solution and stained with crystal violet. Colonies were counted for the control and experimental groups, with each experiment performed in triplicate.

2.7. Determination of intracellular reactive oxygen species (ROS) concentration

Measurement of intracellular ROS concentration is described in the literature [14]. In brief, SK-OV-3 cells growing on 40 mm diameter glass cover slips were incubated with buffer containing 10 μM dichlorodihydrofluorescein diacetate (DCFH-DA). After incubation for 20 min at 37 °C, cells were washed three times with phosphate-buffered saline (PBS), and the change of intracellular ROS was detected by scanning fluorescence intensity under confocal microscopy (Leica TCS SP2). The images were quantitatively treated with the software ImageJ (NIH, USA). The three-dimensional (3D) surface plots were obtained and then the peaks’ volume was calculated after background subtraction and the cell area was also calculated. The mean intensity of fluorescence area was defined as a peak volume/cell area and then normalized with the control image.

2.8. Cell apoptosis determined by flow cytometry (FCM)

SK-OV-3 cell apoptosis was analyzed using an Annexin V-FITC Apoptosis Detection kit I (BD pharmingen™, cat SK-OV-3 cell apoptosis was analyzed using an Annexin 2.8. Cell apoptosis determined by flow cytometry (FCM) the mean intensity of fluoresce area was defined as a peak background subtraction and the cell area was also calculated. were obtained and then the peaks' volume was calculated after ImageJ (NIH, USA). The three-dimensional (3D) surface plots were obtained and then the peaks’ volume was calculated after background subtraction and the cell area was also calculated. The mean intensity of fluorescence area was defined as a peak volume/cell area and then normalized with the control image.

2.9. Flow cytometry analysis of cell cycle

The cells fixed in 70% ethanol were washed, re-suspended, and treated with 10 μg ml⁻¹ RNase for 30 min at 37°C, and then stained with PBS containing 50 μg ml⁻¹ PI for 30 min at 4°C. Analysis was performed with a FACSCalibur flow cytometer (BD Biosciences, Hercules, CA, USA). These tests were performed in triplicate and each 20,000 cell sample was tested. Values were expressed as the mean ± standard deviation (SD).

2.10. Statistical analysis

Experimental values were determined in triplicate. All values involving gold content are expressed as means and standard errors (SE). The one-way analysis of variance (ANOVA) and Tukey multiple comparison post-test were used. Differences less than 0.05 (p < 0.05) were considered statistically significant.

3. Results

3.1. Characterization of GNPs

The average gold concentration of the GNP solutions synthesized was 80 mg l⁻¹, measured by ICP-AES. Figure 1(A) shows the TEM image of GNPs. Thio-glucose (figure 1(B)) was capped onto the surface of GNPs to form Glu-GNPs (figure 1(C)). Figure 1(D) shows the size distribution of GNPs measured by DLS. The actual diameter of the GNPs was 14.37 ± 2.49 nm, calculated based on measurements made by TEM. The GNPs used in the study had the same size. The average number of biomolecules (approximately 2.5 × 10⁷ thio-glucose) on one nanoparticle was calculated by measuring the gold-to-sulfur atom ratio acquired with XPS.

3.2. Distributions and uptakes of GNPs and Glu-GNPs

SK-OV-3 cells were incubated with 5 nM GNPs and 5 nM Glu-GNPs, respectively. Figure 2(A) shows the average number of nanoparticles internalized by each cell at individual time points (1–96 h). It illustrates that the uptake of both GNPs and Glu-GNPs by SK-OV-3 cells increased with incubation time during the first 48 h. Peak uptake concentration for both naked GNPs and Glu-GNPs was observed at 48 h. SK-OV-3 cells internalized much more Glu-GNPs than naked GNPs at each interval of time. After treatment with the nanoparticles for 4 h, the average numbers of the nanoparticle internalized by each cell was (8.00 ± 0.90) × 10³ for naked GNPs and (9.30 ± 0.68) × 10³ for Glu-GNPs, respectively (P = 0.026).

3.3. Cytotoxicity of GNPs and Glu-GNPs

5 nM of either GNPs or Glu-GNPs were incubated with cells separately and the cytotoxicity of the nanoparticles without radiation was measured by an MTT test. Cell survival rates after 48–96 h treatment were determined by an MTT assay. Figure 2(B) shows three groups with 0, 1, and 5 nM Glu-GNPs without x-ray radiation. Cell viability for groups with 1 nM and 5 nM Glu-GNPs were 96.8% and 96.8% respectively on day 2 (P < 0.05). Glu-GNPs subject to x-ray radiation reduced the survival rate remarkably compared to groups treated with x-ray radiation. Cell viability for groups with 1 nM and 5 nM Glu-GNPs were 96.8% and 96.8% respectively on day 2 (P > 0.05), 97.3% and 93.2% on day 4 (P > 0.05), compared to the control group without Glu-GNPs (figure 2(B)). These results in cell survival analysis indicate that Glu-GNPs in either 1 or 5 nM concentrations did not induce remarkable cytotoxicity on SK-OV-3 cells.

3.4. Glu-GNPs enhanced radiation sensitivity of SK-OV-3 cells

Figures 2(C) and (D) show that Glu-GNPs enhanced radiation sensitivity of SK-OV-3 cells. No significant differences were observed between groups receiving 6 MV or 90 kVp irradiation (P > 0.05). Glu-GNPs subject to x-ray radiation reduced the survival rate remarkably compared to groups treated with x-ray radiation alone. For example, 90 kVp irradiation alone (5 Gy) induced a survival rate of 64.39% for SK-OV-3 cells while Glu-GNPs (5 nM) enhanced the radio-sensitivity, thus reducing the cell survival rate to 44.76% (figure 2(C)). The 1.25, 2.5, and 5 nM Glu-GNPs enhanced the cell sensitivities...
Figure 1. Characterizing Glu-GNPs. (A) TEM picture of GNPs alone; (B) and (C) the schematic of GNPs coated with thio-glucose; (D) the size distribution of Glu-GNPs measured by DLS; (E) characterizing Glu-GNPs using XPS.

toward 5 Gy 6 MV irradiation, showing survival rates ranging from 79.6% for x-ray alone to 61.3%, 60.0%, and 58.2% for the combined treatments, respectively. A significant decrease in survival rate was observed, averaging 10.6% ($P < 0.01$) compared to controls (figure 2(D)).

Cell colony formation assay was also used to determine the sensitivity of Glu-GNPs enhanced radiation. 6 MV irradiation with doses of 2.5, 5, 10, 15, and 20 Gy induced inhibitory rates of 9.9%, 26.1%, 39.6%, 56.8%, and 76.2%, respectively. If 5 nM Glu-GNPs were added before irradiation, the same doses of irradiation produced inhibitory rates of 11.7%, 30.6%, 61.4%, 92.8%, and 100%, respectively ($P < 0.007$) (figure 2(F)). Similar enhancement ratios were observed for 90 kVp irradiation groups. Cells subject to 90 kVp radiation doses of 2.5, 5, 10, 15, and 20 Gy experienced growth inhibition rates of 17.7%, 35.6%, 54.5%, 78.6%, and 95.5%, respectively. When combined with 5 nM Glu-GNPs, the same dose of radiation-induced cellular inhibitory rates were found with 26.2%, 55.2%, 91.7%, 100%, and 100%, respectively ($P < 0.007$) (figure 2(E)). A comparison of enhancement rates induced by either 6 MV or 90 kVp irradiations is shown in figure 2(G). Higher sensitization ratios were achieved for 90 kVp irradiation than 6 MV irradiation. When 5 nM Glu-GNPs were subject to irradiation doses of 2.5, 5, 10, 15, and 20 Gy, the inhibitory rates were 4.23%, 12.6%, 37.5%, 83.75%, and 100%, respectively.

3.5. Intracellular reactive oxygen species (ROS) concentration

To investigate the effect of x-ray induced ROS on cancer cells, we used CM-H2-DCFDA, a fluorescence-based probe that detects the intracellular production of ROS. CM-H2-DCFDA passively diffuses into cells, and becomes deacetylated by intracellular esterases. It is subsequently oxidized to a fluorescent product in the presence of intracellular ROS where the fluorescence indicates the level of intracellular oxidative stress. Figure 3 showed that Glu-GNPs enhance the production of intracellular ROS when irradiated with 8 Gy x-rays. 90 kVp irradiations at 8 Gy induced an approximately 5.1-fold increase in basal CM-H2-DCFDA fluorescence (figure 3(C)), which was enhanced to an 8.3-fold increase by adding 5 nM Glu-GNPs before x-irradiation ($p < 0.05$) (figure 3(D)). Similarly, 6 MV irradiation at 8 Gy induced a 3.4-fold increase for irradiation alone and a 7.8-fold increase for irradiation plus GNPs in basal CM-H2-DCFDA fluorescence ($p < 0.05$) (figures 3(E) and (F)).
Figure 2. Study of the interactions between nanoparticles and SK-OV-3 cells. After culturing with either GNPs or Glu-GNPs for 24 h, SK-OV-3 cancer cells were used for analyzing the uptake and cytotoxicity effects of nanoparticles, or for treating by the irradiation (5 Gy): (A) cell uptakes of GNPs versus Glu-GNPs; (B) cytotoxicity induced by GNPs and Glu-GNPs measured by the MTT assay; (C) survival rates for groups with 90 kVp irradiation (5 Gy) plus Glu-GNPs measured by the MTT assay; (D) survival rates for groups with 6 MV irradiation (5 Gy) plus Glu-GNPs measured by the MTT assay. GNPs enhanced radiotherapy measured by the colony formation: the inhibition rate induced by Glu-GNPs plus different doses of 90 kVp irradiation (E) or 6 MV irradiation (F); (G) comparison of the enhancement of using GNPs with either 90 kVp irradiation or 6 MV irradiation.

3.6 Apoptosis detection by flow cytometry

To assess the effect of GNPs on 6 MV x-ray induced apoptosis, dual staining of cells with Annexin V-FITC and PI was used to quantitatively distinguish apoptotic cells from normal and necrotic cells. Dots in the lower-right (LR) quadrant represent early stage apoptotic cells and dots in the upper-right (UR) quadrant represent late stage apoptotic cells. Therefore, the sum of LR and UR represents the apoptotic rate. Before irradiation, cells in the Glu-GNP group experienced similar levels of apoptosis to the control group (9.26 ± 2.16% versus 7.06 ± 2.49%, \(P = 0.13 \)). However, exposure to 6 MV irradiation caused significant increases in the apoptosis of SK-OV-3 cells compared to controls (14.35 ± 0.90% versus 7.06 ± 2.49%, \(P = 0.017 \)). Glu-GNPs subject to 6 MV irradiation induced a significant increase in apoptosis (18.57 ± 1.44%) compared to irradiation alone (14.35 ± 0.90%, \(P = 0.003 \)) (figure 4). These data indicate that one mechanism of the radio enhancement effect of GNPs is due to increased cell apoptosis.

3.7 Glu-GNPs alter cell cycle distribution

Treatment of SK-OV-3 cells with 5 nM Glu-GNP for 2 h induced an increase of cells in the G2/M phase and a decrease of cells in the G0/G1 phase when compared with the control cells (figures 4(F)–(H)). GNPs arrested cells at G2/M, the radiosensitive phases of the cell cycle, and thereby enhanced the radiation sensitivity of SK-OV-3 cells. In this study, 9.28% of the untreated control cells were in the G2/M phase, and Glu-GNP increased the fraction of cells in the G2/M phase.
Figure 3. The cellular fluorescence changes resulting from intracellular ROS production were measured by a confocal microscope. After culturing with or without Glu-GNPs for 24 h, SK-OV-3 cancer cells were treated with irradiation: (A) control; (B) 5 nM Glu-GNPs; (C) 90 kVp irradiation (8 Gy); (D) 90 kVp irradiation (8 Gy) + 5 nM Glu-GNPs; (E) 6 MV irradiation (8 Gy), and (F) 6 MV irradiation (8 Gy) + 5 nM Glu-GNPs.

4. Discussion

Radiation enhancement by metallic nanoparticles has been widely reported both in vivo [7] and in vitro [8–11]. In animal testing, GNPs significantly increased the survival rate of mice bearing subcutaneous EMT-6 mammary carcinomas after receiving 250 kVp x-rays [7]. Meanwhile, Rahman et al reported the radiation enhancing effects of kilovoltage x-rays and megavoltage electrons in bovine endothelial cells [9]. Our previous study showed that the radiation efficiency of 200 kVp x-rays significantly increased for breast cancer and prostate cancer cells containing internalized Glu-GNPs [12, 13]. Our experiments are the first worldwide to demonstrate that Glu-GNPs enhance the sensitivity of ovarian cancer cells to 6 MV photons and 90 kVp x-rays.

A major engineering challenge is the delivery of nanoparticles to the targeted tumor site. Various approaches for targeted delivery have been investigated [15, 16]. Our experiments used glucose as a targeting ligand to coat the surface of GNPs. Since cancerous cells metabolize much faster, they uptake glucose at significantly higher rates, allowing for selective internalization of Glu-GNPs [12]. The faster cancer cells grow, the faster the metabolism rate, and thus the more uptake of glucose. It is difficult to accurately make the comparison between cells’ uptake of Glu-GNPs by ovarian cancer cells and by normal ovarian cells using in vitro tests because in vitro tests cannot properly present the growth rate of the normal ovarian cells. However, our in vivo data indicated that the biodistribution of Glu-GNPs in cancer tissue is ten times higher than those in normal ovarian and uterus tissue (unpublished data) (see supporting data available at stacks.iop.org/Nano/22/285101/mmedia). In this study, uptake concentrations reached peak levels between 24 and 48 h, then diminished thereafter. Glucose significantly increased the localized uptake of GNPs by SK-OV-3 cells and, moreover, allowed nanoparticles to stay internalized longer in the cytoplasm. Based on observed cell uptake kinetics, a radiotherapy regimen was formulated to administer irradiation 24 h after GNPs were injected into the bloodstream.

In developing GNP enhanced radiotherapy, most studies have focused on low-energy radiation because high atomic
The cell apoptosis induced by Glu-GNPs induced radiotherapy was measured by the flow cytometry dot plots of Annexin V-FITC/PI dual staining. After culturing with or without Glu-GNPs for 24 h, SK-OV-3 cancer cells were detected by flow cytometry: (A) control, (B) Glu-GNPs alone, (C) x-ray alone, (D) Glu-GNPs + x-ray, (E) blank. The flow cytometric analysis of the cell cycle induced by Glu-GNPs: (F) control without treatment; (G) treatment with Glu-GNPs; and (H) comparison of the changes of cell cycle between the control group and the cells treated with Glu-GNPs for 2 h.

Figure 4. The cell apoptosis induced by Glu-GNPs induced radiotherapy was measured by the flow cytometry dot plots of Annexin V-FITC/PI dual staining. After culturing with or without Glu-GNPs for 24 h, SK-OV-3 cancer cells were detected by flow cytometry: (A) control, (B) Glu-GNPs alone, (C) x-ray alone, (D) Glu-GNPs + x-ray, (E) blank. The flow cytometric analysis of the cell cycle induced by Glu-GNPs: (F) control without treatment; (G) treatment with Glu-GNPs; and (H) comparison of the changes of cell cycle between the control group and the cells treated with Glu-GNPs for 2 h.

number \((Z)\) materials such as gold preferentially absorb kilovoltage x-rays compared to higher-energy megavoltage radiation [17]. Our present study demonstrates that Glu-GNPs achieved superior enhancement ratios at 90 kVp than 6 MV. However, orthovoltage x-rays are limited in therapeutic applications, only effective for cancer near the body’s surface. Megavoltage x-rays are far more common in radiotherapy, particularly for deep-seated tumors such as ovarian cancer. Hence, for radio-therapeutic treatment of ovarian cancer it seems far more practical to use GNPs to enhance megavoltage radiotherapy. Data in figures 2(D) and 4(F) show that Glu-GNPs enhance radiation sensitivity toward 6 MV photons by 24% in SK-OV-3 cells. The effect of amplified MV x-rays on cell apoptosis cannot be singularly attributed to high-Z materials alone, additional mechanisms must be considered, such as GNP interactions with the cellular cycle [18].

Ionizing radiation is known to generate \(\cdot OH\) radicals through radiolysis of water molecules. These free radicals react rapidly with multitudes of biological macromolecules, such as nucleic acids, proteins, and lipids to induce nucleic base damage, DNA–protein cross-links, lipid peroxidation, and protein degradation [17, 20]. These factors are a potential trigger for radiation-induced apoptosis [21, 22]. Although GNPs alone at a very high concentration (10 \(\mu\)M) were reported to generate a significant level of ROS [19], this concentration is too high for clinical applications. In the present study, to our knowledge, we are the first group to demonstrate that Glu-GNPs at very low concentration (5 nM) with 6 MV x-ray irradiation can produce a high level of intracellular ROS to kill ovarian cancer cells (figure 3). These ROS lead to higher elevated levels of oxidative stress manifesting as increased levels of apoptosis compared to irradiation alone (figure 4). The results indicate that increased ROS formation when radiation interacts with GNPs is a key mechanism that mediates cancer cell apoptosis.

Another intriguing aspect of GNPs’ behavior is their disproportionate cytotoxicity toward cancer cells. In our previous study, MCF-7 cancer cells and MCF-10A normal cells (non-cancerous) were made to internalize the same concentration of GNPs with the expectation that they would induce similar irradiation cytotoxicities [12]. However, after being exposed to identical radiation doses, the viability of the cancer cells decreased significantly (about 40%) while no significant changes were observed in the normal cells [13]. These results provide convincing evidence that GNPs are involved in cellular mechanisms apart from ROS enhancement. Turner et al reported that metallic materials may arrest cells at the G2/M phase, the most radiosensitive phase of the cell cycle [23], and thus disproportionately increase the sensitivity of cancer cells toward radiation. Zhang et al reported that Glu-GNPs trigger activation of the CDK kinases, leading cancer cells to accumulate in the G2/M phase. Consequently, after
treatment with Glu-GNPs, cancer cells were more sensitive to radiotherapy. In summary, we demonstrate that Glu-GNPs have remarkable potential to enhance radiotherapy on ovarian cancer cells. Except for kVp irradiation reported previously in [12, 13], the results of our in vitro tests on SK-OV-3 cells also showed that GNPs can significantly increase the cytotoxicity using 6 MV irradiation. We also reported that GNPs, even at very low concentration (5 nM), combined with x-ray irradiation can generate a significant increased ROS production compared to x-rays alone in killing ovarian cancer cells. Furthermore, we hypothesize that GNPs manipulate the cancer cell cycle to increase radiation susceptibility. Our future work will investigate the molecular mechanisms governing GNP enhancement of radiation cytotoxicity, followed by testing the functionalized GNPs in animal models.

Acknowledgments

This project was supported by the grants to Beihua Kong (no. 30872738) and Kun Song (no. 30700897) from the National Natural Science Foundation of China. The project was also supported by grants from the National Research Council/National Institute of Nanotechnology, Canada and the Canadian Cancer Research Alliance.

References

[18] Roa W et al 2009 Gold nanoparticle sensitize radiotherapy of prostate cancer cells by regulation of the cell cycle Nanotechnology 20 375101
[19] Chompoosor A et al 2010 The role of surface functionality on acute cytotoxicity, ROS generation and DNA damage by cationic gold nanoparticles Small 6 2246–9